Energiankulutuksen joustosta 1

Kohteen riippuvuus lämpötilasta

Yksittäisen kohteen energiankulutuksen aikasarjat ovat useimmiten omasta välittömästä historiastaan, vuodenajasta sekä ulkolämpötilasta riippuvia. Monilla yhtiöillä on mahdollisuus tarkastella yksittäisiä aikasarjoja graafisesti, mutta miten ottaa haltuun koko mittaustietojen kokonaisuus?

Ready Solutions Oy:n näkemyksen mukaan avainasemassa on mittausdatan mahdollisimman automaattinen hyödyntäminen, esimerkiksi koneoppimismenetelmien tuottamien ennusteiden avulla. Ennusteet ja mittausdatassa oleva informaatio täytyisi tiivistää muutamaan keskeiseen tunnuslukuun, joista yhden käsittelemme tässä kirjoituksessa.

 

Käyttötapaukset

Suoran sähkölämmityksen kohteen tapauksessa erilaiset riippuvuuden tunnusluvut tarjoavat sähkön myyjälle ja miksei myös verkkopalveluita tarjoavalle yhtiölle mahdollisuuden esimerkiksi riskiperusteiseen hinnoitteluun.

Kaukolämmön liiketoiminnassa, jossa hinnoittelu perustuu tyypillisesti muutamaan julkisen hinnaston mukaiseen komponenttiin, tällaisten tunnuslukujen avulla voitaisiin hinnoitella verkostokohtaisesti perusmaksuja. Tausta-ajatuksena on, että asiakas maksaa optiosta käyttää energiaa.

Olemme muutamissa tapauksissa rakentaneet kaukolämmön liiketoiminnoille automatisoidut prosessit, jotka tuottavat esimerkiksi tilausvesivirran tai tehon ennusteet.

Näiden suoraan liiketoimintaan liittyvien tapausten lisäksi mittausdatan laadunvarmistuksen näkökulmasta voi käydä läpi erityisen poikkeavia tunnuslukuja.

 

Kaarijousto – Arc Elasticity

Kaarijousto on tunnusluku, joka kohteen energiankulutuksen volyymista riippumattomasti pyrkii tiivistämään lämpötilariippuvuuden.

Jos käytetään yksinkertaista regressiomallia, niin jousto voidaan saada suoraan mallin kertoimia käyttäen. Muussa tapauksessa voidaan tuottaa paikalliset ennusteet ja laskea tulos auki niiden avulla. Molemmat esimerkit on esitetty kaavoina alla olevassa kuvassa.

Yllä olevassa kuvassa E on energiakulutus ja T on lämpötila, indeksoinneilla kuvataan paikallisuutta tai keskiarvoa tietyllä havaintoalueella.

Erityisesti pienten kulutuskohteiden tapauksessa ennusteiden tuottamisessa käytettyjen muuttujien arvojen vaihtelu voi olla suurta ja tuloksia täytyy tarkastella kriittisemmin.

 

Kiinnostaako koneoppiminen ja data-analytiikka energiatoimialalla?

 

Toteutimme Savon Voimalle konseptiimme perustuen useita koneoppimisen (ML) ratkaisuja, joiden kehityksen yhteydessä osoitimme että tällaiset projektit voidaan toteuttaa joustavasti ilman valtavia investointeja. Käy tutustumassa asiakas – caseemme!

 

 

HR Analytiikka – Nuppiluvut ja FTE

Jatkamme tässä aiemman artikkelimme mukaisesti HR – dataan liittyvien asioiden käsittelyä.

Henkilöstön kokonaismäärä (”nuppiluku”) ja FTE:t ovat yksi tärkeimmistä HR  – raportoinnin ja analytiikan perusluvuista, antaen kuvan työntekijöiden määrästä yrityksessä ja missä päin yritystä he työskentelevät. Nuppilukuja käytetään esimerkiksi kun suunnitellaan tarvittavaa henkilöstömäärää tulevaisuuden projekteihin ja tehtäviin, näyttäen nykyisen tarjonnan. Lisäksi nuppiluku/fte on usein jakajana kun lasketaan erilaisia kuluja per henkilö (FTE) tai liikevaihto per henkilö (FTE). Toki myös viranomaisraportointia joutuu tekemään.

Määritelmät
Nuppiluku (HeadCount): Työsuhteessa oleva työntekijä lasketaan nuppiluvuksi 1
FTE: Työntekijöiden määrä täysiaikaisina työntekijöinä (jos työskentelee vain puolet viikosta/kuukaudesta, saa luvun 0.5)

Mistä lähteistä nämä luvut saadaan?
Alla näkyvässä kuvassa näkyy miten johdetut taulut HeadCount ja FTE on kytketty muihin
HR-perusjärjestelmän tauluihin.

Nuppiluvut otetaan yleensä HR-perusjärjestelmän työsuhde-taulusta. Laskelmat tehdään yleensä kuukauden tarkkuudella ja määritelmä voi olla esimerkiksi ’jos henkilöllä on työsuhde voimassa kuun viimeisenä päivänä’ saa hän arvon 1 sille kuukaudelle. Tähän voi lisätä muita versioita tai rajauksi ottamalla pois henkilöt jotka ovat pitkillä poissaoloilla, tai jotka eivät ole varsinaisia työntekijöitä vaan contractoreita (konsultteja) yhtiössä. Alla näkyvä HeadCount taulu on lopullisessa raportointi-muodossa tähtimallissa, jossa Työsuhteen tiedot on tuotu suoraan HeadCount tauluun kiinni. Nuppilukulaskelmissa päänsärkyä voi aiheuttaa työntekijät joilla on konserniin useita työsuhteita yhtäaikaa eri yhtiöihin meneillään. Näitä voi ajatella kaikkia yhtenä HeadCounttina tai sitten jättää mahdollisuuden BI työkalussa katsoa niitä yhtenä tai useana HeadCounttina.

FTE laskelmat menevät eri tavalla kuukausittaisille työntekijöille ja tuntipalkkalaisille. Kuukausipalkkalaisille lähteenä käytetään HR-perusjärjestelmän työsuhde-taulua, ja laskelma eroaa seuraavalla tavalla nuppiluvuista: Henkilö saa arvon 1 FTE ollessaan koko kuun töissä, mutta jos hän on vain puolet kuusta niin arvoksi tulee 0.5. Yleensä HR haluaa FTE:stä eri versioita, esimerkiksi vähentäen kuukauden aikana olleet poissaolot tai vain palkattomat poissaolot. Myös osa-aikaiset työntekijät tulee huomioida.

Tuntipalkkalaisten FTEt otetaan yleensä maksetuista palkoista, joissa siis tulisi näkyä maksetut tunnit. Kuukauden aikana maksetut tunnit jaetaan kuun maksimituntimäärällä, ja jälleen täysiaikainen töissäolo antaa arvon 1. Alla näkyy FTE-taulu tähtimallimuodossa.

Usein FTEt halutaan lisäksi jakaa kustannusjakoperusteella eri kustannuspaikoille, kun taas nuppiluvut saatetaan näyttää vain pääkustannuspaikalla. On oleellista myös huomata miten eri tavoin HR raportointi ja perusjärjestelmän logiikka toimivat. Esimerkiksi jos huomataan että perusjärjestelmässä on virheellisesti työsuhde (henkilöä ei ole todellisuudessa ollutkaan työllistettynä) niin HR-perusjärjestelmään virhe korjataan, mutta jos luvut on tuolla perusteella jo aiemmin raportoitu niin usein lukujen halutaan pysyvän samoina, eikä niiden haluta muuttuvan jatkuvasti vielä vuosien päästä.

Nuppiluku – ja FTE laskelmat saattavat olla monimutkaisia tarkalla tasolla ja onnistunut projekti vaatiikin usein syvää HR-datan käsittelyn ymmärrystä.

Ota yhteyttä myyntiimme, jos HR – dataan liittyvät asiat mietityttävät!

myynti@readysolutions.fi